チュートリアル

1 プリオンタンパク質と低分子化合物の複合体

1 プリオンタンパク質と低分子化合物の複合体

*Paics View*の使い方を示す例として、プリオンタンパク質のC末ドメインとプリオン病阻害薬であるGN8 (*Proc. Natl. Acad. Sci. USA*, 104, 11921)の複合体の計算を行う手順を示す。(マニュアルの「使い方」も参照のこと。)

1.1 複合体の構造

使用する構造は、Paics View と一緒に配布された、

sample_prion_gn8.pdb

に記述されている。プリオンタンパク質の C 末ドメイン(残基番号 124~226)は、1666 原子、103 アミノ酸残基から構成されており、179 番と 214 番が SS 結合を形成している。 また、GN8 は、岐阜大学人獣感染防御研究センターで発見されたプリオン病の阻害薬であ り、63 原子から構成されている。従って、原子の総数は 1729 となる。添付の構造は、プ リオンタンパク質の PDB 構造(1AG2)に、GN8 を加え、古典計算を実行し得られたも のである。

1.2 構造を読む

Paics View を起動し、以下の手順で構造を読む。

- 1. file メニューから read を選択し read molecule window を開く。
- 2. browse ボタンを押してファイル選択ウインドウを開く。
- 3. sample_prion_gn8.pdb を選択する。(拡張子が.out のファイルも添付されているので、 これと間違わないようにすること。)
- 4. テキストボックスにファイル名が入力され、ファイルタイプとして pdb が選択され る。(ファイルの拡張子が.pdb の場合は、ファイルタイプが自動的に pdb となる)。
- 5. read ボタンを押し、構造を読む。
- 6. gui window で、1729 個の原子が読まれ(図1)、1754 個の結合が生成された(図2) ことが確認できる。結合は原子間距離から自動的に作成される(詳しくは、マニュア ルの「使い方」を参照)。
- 7. 同時に、opengl window に、構造が描画される。

义	1:	構造	を読ん	だ後の	gui	window	の原子	の表示
---	----	----	-----	-----	-----	--------	-----	-----

atom						view
1729			link,	bio,	frag,	basis
	1,	Ν,	,	,	,	cc-pVDZso 🔺
	2,	Η,	,	,	,	cc-pYDZso 💻
	3,	Η,	,	,	,	cc-pYDZso
	4,	Η,	,	,	,	cc-pYDZso
	5,	С,	,	,	,	cc-pVDZso
	6,	Η,	,	,	,	cc-pVDZso
	7,	Η,	,	,	,	cc-pYDZso
	8,	С,	,	,	,	cc-pYDZso
	9,	Ο,	,	,	,	cc-pYDZso
	10,	N,	,	,	,	cc-pVDZso 💌

図 2: 構造を読んだ後の gui window の結合の表示

bond	make	clear	view
1704	atom1	atom2	
	1, 1	2	
:	2, 1	3	
:	3, 1	4	
	4, 1	5	
!	5, 5	6	
I	6, 5	7	-

ここで、

- 結合の clear ボタンを押と、結合がクリアされる。
- 再び make ボタンを押すと、結合が再定義される。

1.3 link-group を作成する

以下の手順で link-group を作成する。

- 1. gui window の link-group の make ボタンを押す。
- 2. link-group が 2 個作成され、gui window のリストボックスに表示される(図 3)。 方は、原子数 1666 の link-group で、もう一方は、原子数 63 の link-group である。

ここで、

図 3: make ボタンが押された後の gui window の link-group の表示

- リストボックスの link-group をダブルクリックすると、link-group window が開き、 その link-group のみが描画される。
- link-group の clear ボタンを押と、link-group がクリアされる。
- 再び make ボタンを押すと、link-group が再定義される。

1.4 bio-unit を作成する

以下の手順で bio-unit を作成する。

- 1. gui window の bio-unit の make ボタンを押す。
- 2. コマンドプロンプトにアルファー炭素の情報が書き出される(図4)。
- 3. bio-unit が 103 個作成され、残基の種類が自動的に識別される。また、その結果が、 gui window のリストボックスに表示される(図 5)。
 - 1 番目の bio-unit は、-NH₃⁺のN 末なので、N(+1)の表記が追加される。
 - 103 番目の bio-unit は、-COO⁻ の C 末なので、C(-1) の表記が追加される。
 - 56番目のbio-unitは、91番目のbio-unitとSS結合を形成しているので、SS-91の表記が追加される。
 - 91番目のbio-unitは、56番目のbio-unitとSS結合を形成しているので、SS-56の表記が追加される。
 - 1番目のlink-groupのタイプが、PEPTと変化する。これは、bio-unitを定義することで、1番目のlink-groupがペプチド鎖であると識別されたからである。
 - また、res=001となっているのは、ペプチド鎖の最初の残基番号が1にセット されていることを示している。

図 4: make ボタンが押された後のコマンドプロンプトのログ

👞 main_win.exe-c	open				
 # make bio-unit	t @ link-group 1				
number of atoms number of atoms	s = s (hydrogen) =	- 1666 802			
103 C-alphas we	ere found (ratio =	16.17)			
1 C-alpha 2 C-alpha 3 C-alpha	a: 5,C: a: 12,C: a: 31,C:	8 , N : 27 , N : 34 , N :	1 , 10 , C-side : 29 .	14 ,	15
4 C-alpha 5 C-alpha 6 C-alpha	a: 38,C: a: 45,C: a: 66,C:	41 , N : 62 , N : 79 , N :	36 , 43 , C-side : 64 , C-side :	, 47 , 68 ,	17 13
7 C-alpha 8 C-alpha	a: 83,C: a: 102,C:	98 , N : 105 , N :	81 , C-side : 100 ,	85 , ,,, ,	15
8 C-alpha 10 C-alpha 11 C-alpha	a: 109,C: a: 120,C: a: 130.C:	116 , N : 126 , N : 143 , N :	107 , C-side : 118 , C-side : 128 , C-side :	122 , 122 , 132 .	6 13
12 C-alpha 13 C-alpha	a: 147,C: a: 158,C:	154 , N : 178 , N :	145 , C-side : 156 , C-side :	149 , 160 ,	7 20
14 C-alpha 15 C-alpha	a: 190,C: a: 196,C:	192 , N : 209 , N :	180 , C-side : 194 , C-side :	187 , 198 ,	11 13

- 4.1番目の link-group をダブルクリックし、link-group window を開く。
- 5. bio-seq. のテキストボックスで、001 124 とし、set ボタンを押す。
- 6. ペプチド鎖の最初の残基番号が124に変化する。

ここで、

- リストボックスの bio-unit をダブルクリックすると、bio-unit window が開き、その bio-unit のみが描画される。
- bio-unit の clear ボタンを押と、bio-unit がクリアされる。
- 再び make ボタンを押すと、bio-unit が再定義される。

1.5 fragment を作成する

以下の手順で fragment を作成する。

- 1. gui window の fragment の make ボタンを押す。
- 2. fragment が 103 個作成され、gui window のリストボックスが更新される(図 6)。

make clear view bio-unit 103 link, seq. 1, GLY001 N(+1) ۸ 1, 1, LEU002 2, 1, GLY003 3, 1, GLY004 4, 5, 1, TYR005 6, 1, MET006 1, LEU007 7. 1, GLY008 8, 9, 1, SER009

1, ALA010

図 5: make ボタンが押された後の gui window の bio-unit の表示

- 1~102番の fragment は、1番目の link-group から作られており、103番の fragment は2番目の link-group から作られている。
- 1~102 番の fragment は、bio-unit に対応している。

10,

- 56番目の fragment は、 CYS179 と CYS214 を合わせて1つのフラグメントとなっている(SS 結合があるため)。
 - 図 6: make ボタンが押された後の gui window の fragment の表示

frag	ment			ma	ke	clear	view
103	_	ele	atm	add,			
	1,	16	7	0,	GLY12	24	
	2,	62	19	1,	LEU12	25	
	3,	30	- 7	1,	GLY12	26	
	4,	30	- 7	1,	GLY12	27	
	5,	86	21	1,	TYR12	28	
	6,	70	17	1,	MET12	29	
	7,	62	19	1,	LEU13	30	
	8,	30	- 7	1,	GLY13	31	
	9,	46	11	1,	SER13	32	
	10,	38	10	1,	ALA13	33	-

ここで、

- リストボックスの fragment をダブルクリックすると、fragment window が開き、その fragment のみが描画される。
- fragment の clear ボタンを押と、fragment がクリアされる。
- 再び make ボタンを押すと、fragment が再定義される。

1.6 GN8 の手動分割

この段階で、基本的な fragment の定義が出来ているが、103 番目の fragment は、GN8 (63 原子)がまるごと1つの fragment になっている。そこで、次は、この fragment をさら に4つに分割する。GN8 の分割箇所を図7 に示す。

図 7: GN8 の分割箇所(図中の数字は分割箇所の原子の通し番号)。

手順は以下の通り。

- 1. gui window の fragment のリストボックスの 103 番目の fragment をダブルクリック する。
- 2. fragment window が開き(図8), opengl window には103番目のフラグメントが描画 される(fキーで拡大し、aキーで原子の番号を描画したのが図9)。
- 3. まず、1697番と1700番の原子間で分割を行う。
- 4. fragment window の一番下のテキストボックスに、2つの原子の番号を入力し、divide ボタンを押す。この際、bda の方に 1697 番を入力する。
- 5. divide ボタンを押すと、fragment window が閉じる。
- 6. gui window の fragment 数が 104 になり、リストボックスの 103 番目と 104 番目のフ ラグメントの表示が、
 - 103, 110 30 1, 104, 116 33 0,

となる。これは、もともと 63 原子から構成されていた 103 番目の fragment が、30 原子の fragment と 33 原子の fragment に分かれたこと意味する。

7. 次に、再び、103 番目のフラグメントをダブルクリックし、fragment window を開く。 この場合、GN8 の片側半分が opengl window に描画される。 図 8: 103 番目の fragment に関する fragment window。赤で示したのが、手動分割を行う部分。

🛃 Paics	View (fragmer	nt window)				<u>_ </u>
fragment								
103								
atom								
e9								
00	1	ink,		bio,	frag,	nuc.		
1667,	С,	2,		,	103,	6		
1668,	Н,	2,		,	103,	1		
1669,	н,	2,		,	103,	1		
1670,	с, Н.	2,		,	103,	1		
1672,	H,	2,		,	103,	i		
1673,	C,	2,		,	103,	6		
1674,	Н,	2,		,	103,	1		
1675,	Н,	2,		,	103,	1		
1676,	υ,	۷,		,	103,	ь		-
electron		tot	aloue		from	went o	harea	
000		200	ar nuc.				1101.80	
220		226			U			
add	del]						
divide	_							
	1	bda		_				
divide								

- 8. 1714 を bda のテキストボックスに入力し、1712 をもう一方のテキストボックスに入力し、divide ボタンを押す。
- 9. gui window の fragment 数が 105 になり、リストボックスの 103 ~ 105 番目の fragment の表示が

103,	46	16	0,
104,	64	14	2,
105,	116	33	0,

となる。これは、30 原子から構成されていた 103 番目の fragment が、16 原子の fragment と 14 原子の fragment に分割され、もともと 104 番目だった fragment が 105 番目にシフトしたことを意味する。

- 10. 最後に、105番目のフラグメントをダブルクリックし、fragment window を開く。
- 11. 1680 を bda のテキストボックスに入力し、1683 をもう一方のテキストボックスに入力し、divide ボタンを押す。

図 9: 103 番目の fragment window を開き、拡大しおよび原子の番号を描画した opengl window。

12. gui window の fragment 数が 106 になり、リストボックスの 103 ~ 106 番目の fragment の表示が

103,	46	16	0,
104,	64	14	2,
105,	70	17	1,
106,	46	16	0,

となる。これは、33 原子から構成されていた 105 番目の fragment が、17 原子の fragment と 16 原子の fragment に分割されたことを意味する。

13. 以上で、GN8 が 4 つの fragment に分割された。

1.7 入力ファイルを書き出す

この fragment の定義の状態で、

- 1. file メニューから write を選択し write molecule window を開く。
- 2. browse ボタンを押してファイル選択ウインドウを開く。
- 3. ファイル名を決める(ここでは、sample_print_gn8.paics.inpとする)。
- 4. write ボタンを押し、入力ファイルを書き出す。
- 5. 入力ファイルが作成されていることを確認し、コマンドプロンプトに exit と打ち込み、*Paics View* を終了する。

作成された入力ファイルの最初の部分は、

mpi_np 1
mem_mbyte 1792

ATOM

172	29	1			
1	7	cc-pVDZso_007	43.057410	76.048248	80. 942639
2	1	cc-pVDZso_001	44.179907	75.949983	82.482766
3	1	cc-pVDZso_001	43.216147	74.423084	79.954312
4	1	cc-pVDZso_001	41.247052	76.295803	81. 494439

となっている(各キーワードの意味は、PAICSのマニュアルを参照)。このファイルに必要なキーワードを加えて、目的の計算を実行する。

「注意1]

入力ファイルを作成する際、link-group や bio-unit は使われず、fragment の定義のみ参照される。 link-group や bio-unit は、あくまで、fragment を定義する過程で必要なので定義される。

1.8 計算を実行する

ここでは、上で作成した入力ファイルに、

.

ri_cmp2_chk 1

の1行みを追加し、計算を実行する。こうすることで、HF計算に加えて、RI-MP2計算が 行われる。mem_mbyteは、1CPU(コア)当たりのメモリを Mbyte 単位で示しており、必 要ならばこの値を下げて実行すること(とりあえず、テスト計算なので、値を大きくする必 要は無い)。mpi_np はこのままでよい(使用する CPU 数を指定しているわけではない)。実 行のしかたは、*PAICS*のマニュアルを参照すること。参考として、8 コア(XeonE5429) 使用した場合、約 38 時間掛かかった。*Paics View*の配布と一緒に、計算済みの出力ファ イル

sample_prion_gn8. paics. out

を添付するので、これを用いて、以下のチュートリアルを進めてもよい。

1.9 計算結果を読む

計算結果が得られたら、Paics View を起動し、出力ファイルを開く。手順は以下の通り。

- 1. file メニューから read を選択し read molecule window を開く。
- 2. browse ボタンを押してファイル選択ウインドウを開き、出力ファイルを選択する。
- 3. ファイルタイプとして paics-out を選択する。(ファイルの拡張子が「.out」であれ ば、自動的に paics-out が選択される。)
- 4. read ボタンを押す。
- 5. gui window で、原子が1729 個、結合が1754 個、fragment が106 個作成されたこと を確認する(出力ファイルに書き出されているのは、計算を行った時の fragment の 定義なので、この段階で、既にGN8 は4分割されている)。link-group と bio-unit の 情報は出力ファイルには記述されていないので、この段階では定義されない。

1.10 link-groupとbio-unitを作る

fragment が定義されていれば、*Paics View*を使って相互作用エネルギーの解析を行う ことが出来るが、fragment とアミノ酸残基の対応を見るために、bio-unit を定義しておい た方が良い。

1. link-group の make ボタンを押して 2 個の link-group を作る。

- bio-unitのmakeボタンを押して103個のbio-unitを作る。この段階で、fragmentの リストボックスにbio-unitの情報が追加される。(しかし、残基番号が1番からはじ まっている。)
- link-group のリストボックスで、1 番目の link-group をダブルクリックし、残基番号の始まりを 124 番にする。

[注意 1]

ここで、fragmentのmakeボタンを押さないこと。理由は以下の通り。fragmentが定義されている 状態でmakeボタンを押すと、一度定義がクリアされ、再度自動的にfragmentが定義される。この 際、入力ファイルの作成で行ったように、GN8は1つのfragmentとなり、fragmentの総数は103 個となる。計算結果は、106個のfragmentに対して実行されたものなので、計算結果とfragment の定義に矛盾が生じる。このような矛盾が発生した場合、計算結果を破棄する仕様となっている。

1.11 相互作用を解析する

ここでは、プリオンタンパク質とGN8の相互作用を、PaicsViewの機能を使って解析 する。(もちろん、出力ファイルには、フラグメント間の相互作用エネルギーが全て出力さ れているので、PaicsViewを使わず、自身のスクリプトなどで解析してもよい。)手順は 以下の通り。

- 1. gui window の tool メニューから energy を選択し、paics energy window を開く。
- 2. 一番上のテキストボックスに、1729 個の原子と106 個の fragment が存在することが 表示される。
- 3. また、calculation result のリストボックスは、

mon-eng rhf	:	106
<pre>mon-eng mp2(ri)</pre>	:	106
distance	:	5565
ifie rhf	:	5565
ifie mp2(ri)	:	5565

となっている。これは、RHF および RI-MP2 のモノマーエネルギーが 106 個読まれ、fragment 間の距離、RHF および RI-MP2 の IFIE (フラグメント間の相互作用 エネルギー)が 5565 個読まれていることを意味する。以下の計算から分かるように、 5565 は、106 個の fragment の全組み合わせである。

106 * (106 - 1) / 2 = 5565

- energy sum のチェックボックスのうち、rhf と mp2(ri) をオンにする。これは、以降の解析で、RHF エネルギーと RI-MP2 エネルギーの和を使うことを指定している。 (どちらか一方のエネルギーのみを解析したい場合は、一方だけをオンにする。)また、今回は、通常のカノニカル MP2 を実行していないので、mp2 のチックボックスは選択不可になっている。
- 5. 次に、fragment を 2 のグループに分ける。以下では、ここで分けたグループ間の相 互作用が解析されることになる。具体的には、

1-102

と入力し、fragment number 2 のテキストボックスに、

103-106

と入力する。1番目~102番目がプリオンタンパク質の fragment で、これらが1つめのグループとなる。一方、103番目~106番目がGN8の fragment であるり、これらが2つめのグループとなる。

- 6. この段階で、paics energy window の上の部分は、図 10 のようになっている。
- 7. ここで、calc ボタンを押すと、paics energy window の下の部分は図 11 のようになる。 それぞれの出力は、以下の通り。
 - internal energy 1 (a.u.)
 1 つめのグループ(1番目~102番目の fragment で、プリオンタンパク質に対応する部分)の内部エネルギー。単位は原子単位。
 - internal energy 2 (a.u.)
 2 つめのグループ(103 番目~106 番目の fragment で、GN8 に対応する部分)
 の内部エネルギー。単位は原子単位。
 - interaction energy (kcal/mol)
 2 つのグループ間の相互作用エネルギー。単位は kcal/mol。
- 8. また、グループ間の相互作用エネルギーは、fragment ごとに分割されリストボック スに出力される。例えば、左側のリストボックスの一番上の行は、
 - 1 1.003 8.31 GLY124

図 10: paics energy window の上の部分。

🛿 Paics View (paics energy window)	
atom fragment 1729 106 calculation results mon-eng rhf : 106 mon-eng mp2(ri) : 106 distance : 5565	energy sum ✔ rhf ┌ mp2
fragment number 1 fragm	mp2(ri) ent number 2 36 calc

となっている。これは、1番目の fragment が、

(1)相手のグループ(GN8)と1.003 kcal/molの相互作用エネルギーをもつ

- (2)相手のグループ(GN8)と8.31Å離れている
- (3) GLY124 の biounit に対応している

ことを示している。同様に、右側のリストボックスは、GN8を構成する4つの fragment が、相手のグループ(プリオンタンパク質)と及ぼす相互作用エネルギーを示して いる。これらを解析することで、プリオンタンパク質とGN8の結合において、「ど のアミノ酸残基が重要に寄与しているか」もしくは「GN8のどの部位が重要に寄与 しているか」を調べることができる。具体的な解析例を以下に示す。

左側のリストボックスで、相手のグループとの距離が 3.0 Å 以内のフラグメントを抜き出すと、

7	-0.649	2.15	LEU130
13	-1.830	2.18	ARG136
33	-2.875	2.42	ARG156
34	-2.572	2.52	TYR157
35	-8.490	2.18	PR0158
36	-14.143	1.89	ASN159
37	-11.805	2.49	GLN160
38	-1.511	2.69	VAL161
39	-1.416	2.64	TYR162
60	-1.867	2.19	THR183

図 11: paics energy window の下の部分 (calc ボタンを押した後)。

internal energy 1 (a.u.) -45227.165819 interaction energy (kcal/	internal energy 2 (a.u -1337.332288 'mol))		
-93.791410 frag. eng. dist. 1 1.003 8.31 2 -0.138 4.20 3 -0.045 8.33 4 0.119 10.94 5 0.050 8.24 6 -0.045 9.14 gnuplot kill	GLY124 LEU125 GLY126 GLY127 TYR128 MET129	frag. eng. 103 -8.305 104 -30.377 105 -34.860 106 -20.250 gnuplot 2	dist. 2.19 2.19 1.89 2.15 kill	4

61	-3.398	2.80	I LE184
63	-2.305	2.58	GLN186
64	-9.468	2.44	HI S187
71	-9.140	2.38	LYS194
73	-30.473	2.19	GLU196
74	5.290	2.65	ASN197

となる。これは、GN8から 3.0 Å 以内に存在するアミノ酸残基が、GN8と及ぼ す相互作用エネルギーに対応する。この数値をプロットすると、図 12となる。

図 12: 相互作用エネルギーのプロット(1)

このデータから、プリオンタンパクが GN8 と結合する際、ASN159、GLN160、 HIS187、LYS194、GLU196 のアミノ酸残基が、重要な働きをしていると考え られる。

右側のリストボックスは、

103	-8.305	2.19
104	-30.377	2.19
105	-34.860	1.89
106	-20.250	2.15

となっている。これは、GN8の4つの部位が、プリオンタンパクと及ぼす相互 作用エネルギーに対応する。この数値をプロットすると、図13となる。

図 13: 相互作用エネルギーのプロット(2)

このデータから、GN8のうち、真ん中の部位はプリオンタンパクとの結合に重要に寄与し、両端の部分は、それほど大きく寄与しないと考えられる。

[注意 1]

量子化学計算で評価されるのは、結合自由エネルギーのエンタルピー項のみである。また、 今回の例では、溶媒分子も含まれていない。さらに、古典計算のトラジェクトリーから抜き 出した、たった1つの構造での計算である。生体分子に量子化学計算を応用する場合は、こ れらの事情を十分考慮し、結果を適切に解釈する必要がある。

 9. その下にある、gnuplot ボタンおよび kill ボタンは、それぞれのリストボックスに出 力されている相互作用エネルギーを図示するためのものであるが、ここでは説明を 省略する。(この機能を使用するためには、gnuplotの設定が必要となる)。